Komunikaty PR

Mini machines, big impact: tackling distortion in PT-symmetric MEMS

2025-06-23  |  13:55:07
PT-symmetric silicon micromechanical resonators.

PT-symmetric silicon micromechanical resonators.

GA, UNITED STATES, June 23, 2025 /EINPresswire.com/ -- Achieving unidirectional signal flow—where information travels in only one direction—is vital for next-generation communication systems. Micromechanical devices leveraging parity-time (PT) symmetry offer a promising route to this goal without the need for bulky magnets. But, are there any distortions in these systems? In a groundbreaking study, researchers present the first experimental exploration of nonlinear distortion in silicon-based PT-symmetric resonators operating in a broken phase. They pinpoint critical performance thresholds, including a 1 dB gain compression point at 5 dBm and an intermodulation intercept point at 11.5 dBm, laying a foundation for more robust and compact nonreciprocal components.

Traditional nonreciprocal devices rely on magnetic materials to steer signals in one direction—an approach that poses significant challenges for integration into modern microelectronic systems. parity-time (PT)-symmetric systems, which feature gain and loss, have emerged as a novel way to break reciprocity using engineered asymmetries instead of magnets. These systems have demonstrated success across optics, acoustics, and mechanics. However, their nonlinear behavior, especially under higher signal strengths, introduces a new layer of complexity. Signal distortion from nonlinear gain threatens the very advantages these systems promise. Due to these problems, a detailed investigation into how PT-symmetric resonators behave under nonlinear stress is urgently needed.

A research team from Southeast University, China, has taken a critical step toward enabling chip-scale nonreciprocal devices by experimentally probing how PT-symmetric silicon micromechanical resonators exhibit nonlinear distortion. Published on May 21, 2025, in Microsystems & Nanoengineering, their study fills a knowledge gap in microelectromechanical systems (MEMS) design by quantifying when and how signal fidelity degrades under increasing input power. Their findings not only validate theoretical models but also reveal unexpected contributors to distortion—bringing us closer to practical, miniaturized components for wireless and sensing applications.

The researchers engineered a pair of silicon micromechanical resonators, one providing gain and the other loss, to operate in the "broken phase" of PT symmetry—a regime that enables nonreciprocal behavior. By applying external driving signals and adjusting vacuum and coupling conditions, they created a system where signals transmitted in one direction experience less attenuation than in the other. But the real test came when signal strength increased. The team discovered that at an input of 5 dBm, the gain began to compress—a key distortion threshold known as the 1 dB compression point. At 11.5 dBm, third-order intermodulation signals appeared, marking the IIP3. These distortions were influenced not just by nonlinear gain but also by inherent electrostatic forces and geometric softening in the silicon beams. This multi-source distortion challenges simple models and underscores the importance of comprehensive simulations. By aligning experiment with theory, the researchers provide the first quantitative framework for distortion in nonreciprocal micromechanical systems.

"Our study sheds light on what really happens inside PT-symmetric micromechanical systems when you push them hard," said Prof. Qing-An Huang, co-author of the study. "We now know that multiple nonlinear effects—not just gain—contribute to signal distortion. This insight allows us to fine-tune these devices for real-world applications and helps pave the way for reliable, miniaturized nonreciprocal components."

These findings have important implications for the design of next-generation MEMS-based isolators and circulators—key components in communication systems, radar, and signal processing. By identifying when and why distortion arises, engineers can now optimize PT-symmetric devices for higher signal fidelity and broader functionality. The results open a path toward compact, low-power nonreciprocal systems that can be seamlessly integrated into chips—transforming how we control signal flow at the microscale.

References
DOI
10.1038/s41378-025-00952-0

Original Source URL
https://doi.org/10.1038/s41378-025-00952-0

Funding information
This work is supported by the National Natural Science Foundation of China (Grant nos. 61727812, 62074032).

Lucy Wang
BioDesign Research
email us here

Legal Disclaimer:

EIN Presswire provides this news content "as is" without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the author above.

Newseria nie ponosi odpowiedzialności za treści oraz inne materiały (np. infografiki, zdjęcia) przekazywane w „Biurze Prasowym”, których autorami są zarejestrowani użytkownicy tacy jak agencje PR, firmy czy instytucje państwowe.
Ostatnio dodane
komunikaty PR z wybranej przez Ciebie kategorii
EIN Newswire BRAK ZDJĘCIA
2025-07-16 | 12:55:06

BoCG Ventures and Bin Dasmal Group Forge Exclusive Strategic Innovation Corridor Between Los Angeles and Dubai

A bridge between Los Angeles to DubaiNew Partnership to Accelerate Cross-Border Growth in Real Estate, Sports, Fintech, and EntertainmentThe UAE is a dynamic gateway for innovation. This partnership aligns with our mission to scale antifragile
EIN Newswire BRAK ZDJĘCIA
2025-07-16 | 12:55:06

BIRMINGHAM BANK APPOINTS JACKIE BURCHILL AS NEW HEAD OF LENDING

Jackie Burchill New Head of Lending at Birmingham BankJackie Burchill appointed as new Head of Lending at Birmingham Bank BIRMINGHAM, UNITED KINGDOM, July 16, 2025 /EINPresswire.com/ -- Birmingham Bank is pleased to announce the appointment of
EIN Newswire BRAK ZDJĘCIA
2025-07-16 | 12:55:06

Surface Disinfection Market CAGR of 7.4%, Diving Deep Strategies for Identifying and Targeting Your Audience

Surface Disinfection Market CAGRThe growing prevalence of hospital-acquired infections (HAIs) has reinforced the need for rigorous sanitation protocols. WILMINGTON, DE, UNITED STATES, July 16, 2025 /EINPresswire.com/ -- Surface disinfectants are

Więcej ważnych informacji

Jedynka Newserii

Jedynka Newserii

Kongres Profesjonalistów Public Relations

Bankowość

Prawo

Przedstawienie projektu przez KE oznacza początek dyskusji nad nowym siedmioletnim budżetem. W PE zdania co do jego kształtu są podzielone

16 lipca br. Komisja Europejska przedstawi propozycję wieloletnich ram finansowych. To będzie dopiero początek wytężonych prac nad kształtem nowego budżetu i trudnych dyskusji na ten temat, bo wśród państw członkowskich, ale też w różnych frakcjach parlamentarnych jest wiele różnic dotyczących szczegółowych rozwiązań. Chodzi m.in. o podejście do wspólnego zadłużania się, nowych źródeł zasobów UE czy rozszerzania kompetencji UE.

Konsument

Konflikty i żywioły wpływają na wakacyjne plany Polaków. Bezpieczeństwo coraz ważniejsze przy wyborze letniej destynacji

Sytuacja geopolityczna i pogodowa sprawia, że Polacy coraz rozważniej podchodzą do wyboru wakacyjnych kierunków. Choć nieprzewidziane zdarzenia mogą się zdarzyć w każdym miejscu na świecie, to minimalizowaniu ryzyka służą m.in. sprawdzanie ostrzeżeń dla podróżnych na stronach Ministerstwa Spraw Zagranicznych, rejestracja w systemie Odyseusz, który zadziała w razie kryzysowej sytuacji, a także wyjazd z ubezpieczeniem turystycznym. Koszty ewentualnego leczenia czy repatriacji znacząco przewyższają bowiem wysokość składki.

Partner serwisu

Instytut Monitorowania Mediów

Szkolenia

Akademia Newserii

Akademia Newserii to projekt, w ramach którego najlepsi polscy dziennikarze biznesowi, giełdowi oraz lifestylowi, a  także szkoleniowcy z wieloletnim doświadczeniem dzielą się swoją wiedzą nt. pracy z mediami.